QuadTree Project

QuadTree Project Screenshot

During my work on the Quadtree Project, I developed a C++ implementation of the quadtree algorithm to simulate query behavior using Unreal Engine. Below are some of the key achievements:

  • Implemented a robust quadtree data structure for efficient spatial data management.
  • Optimized performance for operations like collision detection in particle systems.
  • Provided real-time visualization of quadtree partitions and queried points.

Technologies Used
  • Unreal Engine
  • C++
  • GitHub
  • Visual Studio

Challenges and Solutions
  • Challenge: Efficient spatial data management.
    Solution: Implemented a quadtree structure for optimized data querying.
  • Challenge: Real-time visualization of spatial data.
    Solution: Developed efficient algorithms for updating and rendering quadtree partitions.

Project Achievements
  • Enhanced spatial data management and querying.
  • Improved performance in collision detection.
  • Provided effective real-time visualization of spatial data.

Code Snippets

Below is a key code snippet demonstrating the core quadtree algorithm implementation from the project:


   #include "Quadtree.h"

   // Initialize the quadtree with a center and size
   void AQuadtree::Initialize(FVector InCenter, float InSize)
   {
       Center = InCenter;
       Size = InSize;
       Clear();
   }
   
   // Insert a point into the quadtree
   bool AQuadtree::Insert(FVector Point)
   {
       if (!ContainsPoint(Point)) return false;
   
       if (Points.Num() < Capacity)
       {
           Points.Add(Point);
           return true;
       }
   
       if (!bDivided) Subdivide();
   
       if (NW->Insert(Point)) return true;
       if (NE->Insert(Point)) return true;
       if (SW->Insert(Point)) return true;
       if (SE->Insert(Point)) return true;
   
       return false;
   }
   
   // Query points within a specified range
   TArray AQuadtree::Query(FVector RangeCenter, float RangeSize)
   {
       TArray FoundPoints;
       if (!Intersect(RangeCenter, RangeSize)) return FoundPoints;
   
       for (FVector Point : Points)
       {
           if (FVector::Dist(Point, RangeCenter) <= RangeSize)
           {
               FoundPoints.Add(Point);
           }
       }
   
       if (bDivided)
       {
           FoundPoints.Append(NW->Query(RangeCenter, RangeSize));
           FoundPoints.Append(NE->Query(RangeCenter, RangeSize));
           FoundPoints.Append(SW->Query(RangeCenter, RangeSize));
           FoundPoints.Append(SE->Query(RangeCenter, RangeSize));
       }
   
       return FoundPoints;
   }


QuadTree Project showcases the implementation of a 2D quadtree data structure using Unreal Engine, focusing on efficient spatial data management and querying. The project demonstrates the use of quadtrees for optimizing performance in operations like collision detection in particle systems.


Release Date july 7, 2024
Category Simulation, AI
Connect with me
Khaled Zakaria • Game Developer • Unreal engine Programmer • Instructor • Game Programmer •